A APLICAÇÃO DO DESIGN THINKING COMO ESTRATÉGIA DE ENSINO EM DISCIPLINAS DE GESTÃO DA INOVAÇÃO

A APLICAÇÃO DO DESIGN THINKING COMO ESTRATÉGIA DE ENSINO EM DISCIPLINAS DE GESTÃO DA INOVAÇÃO

TEREZA RAQUEL DA SILVA DANTAS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE - UFRN

JOÃO PAULO OLIVEIRA LUCENA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE - UFRN

Comunicação:

O XIII SINGEP foi realizado em conjunto com a 13th Conferência Internacional do CIK (CYRUS Institute of Knowledge), em formato híbrido, com sede presencial na UNINOVE - Universidade Nove de Julho, no Brasil.

Agradecimento à orgão de fomento:

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

A APLICAÇÃO DO DESIGN THINKING COMO ESTRATÉGIA DE ENSINO EM DISCIPLINAS DE GESTÃO DA INOVAÇÃO

Objetivo do estudo

Analisar como a estratégia de ensino do Design Thinking influenciou as experiências dos alunos na disciplina de Gestão da Inovação em um contexto de mestrado profissional.

Relevância/originalidade

Destaca desafios potenciais ao implementar o Design Thinking em ambientes com grupos heterogêneos, enfatizando a importância de estratégias adaptativas e do suporte contínuo por parte dos professores.

Metodologia/abordagem

Para alcançar esse objetivo, adotamos uma abordagem qualitativa, com participação de 13 alunos que cursaram a disciplina em uma Instituição Federal de Ensino Superior (IFES) pública, onde o Design Thinking foi utilizado como metodologia educacional.

Principais resultados

Os resultados destacam que a aprendizagem durante a disciplina, baseada nas fases de imersão, ideação e prototipagem, foi percebida de forma positiva pelos entrevistados.

Contribuições teóricas/metodológicas

Este trabalho fortalece a discussão sobre o ensino guiado pelo Design Thinking, destacando essa metodologia como uma forma de aprendizagem experiencial. Ele acrescenta novos insights à literatura existente, como a "memória de conteúdo" ao longo do tempo.

Contribuições sociais/para a gestão

Como contribuição gerencial, espera-se apoiar o ensino na criação de ambientes cada vez mais conectados com problemas reais de organizações existentes ou da sociedade.

Palavras-chave: Design Thinking, Aprendizagem Experiencial, Metodologia de ensino

A APLICAÇÃO DO DESIGN THINKING COMO ESTRATÉGIA DE ENSINO EM DISCIPLINAS DE GESTÃO DA INOVAÇÃO

Study purpose

Analisar como a estratégia de ensino do Design Thinking influenciou as experiências dos alunos na disciplina de Gestão da Inovação em um contexto de mestrado profissional.

Relevance / originality

200 / 5.000 It highlights potential challenges when implementing Design Thinking in environments with heterogeneous groups, emphasizing the importance of adaptive strategies and ongoing support from teachers.

Methodology / approach

To achieve this objective, we adopted a qualitative approach, with the participation of 13 students who took the course at a public Federal Higher Education Institution (IFES), where Design Thinking was used as an educational methodology.

Main results

The results highlight that learning during the course, based on the immersion, ideation and prototyping phases, was perceived positively by the interviewees.

Theoretical / methodological contributions

This work strengthens the discussion on Design Thinking-guided teaching, highlighting this methodology as a form of experiential learning. It adds new insights to existing literature, such as "content memory" over time.

Social / management contributions

As a managerial contribution, it is expected to support teaching in the creation of environments increasingly connected with real problems of existing organizations or society.

Keywords: Design Thinking, Experiential Learning, Teaching methodology

A APLICAÇÃO DO *DESIGN THINKING* COMO ESTRATÉGIA DE ENSINO EM DISCIPLINAS DE GESTÃO DA INOVAÇÃO

1 Introdução

Várias metodologias têm surgido, buscando estreitar a relação entre aprendizado e prática, como o *Design Thinking* (Gharajedaghi, 2010; Figueiredo, 2021; Pratomo *et al.*, 2021). Essa abordagem oferece uma jornada imersiva que permite aos alunos desenvolver habilidades essenciais para a resolução de problemas complexos (Stock *et al.*, 2018; Zidulka & Kajzer Mitchell, 2018; Silva, 2020).

O *Design Thinking*, reconhecido como uma abordagem estruturada para a geração de soluções inovadoras, prioriza o usuário e fomenta uma abordagem empática (Brown, 2009; Serrat, 2017; Sangwan & Herrmann, 2020). No contexto educacional, essa metodologia viabiliza a participação dinâmica dos alunos, promovendo a colaboração e a flexibilidade (Reis *et al.*, 2019; Linton & Klinton, 2019; Silva, 2020).

A pandemia iniciada em dezembro de 2019, na região de Wuhan, na China, marcou o surgimento de um novo tipo de coronavírus (SARS-CoV), denominado SARS-CoV-2. Devido à rápida disseminação global do vírus, os professores do ensino superior tiveram que se adaptar a esse novo desafio. Em 03/11/2020, o vírus já havia infectado mais de 46 milhões de pessoas e causado mais de 1,2 milhão de mortes, conforme os dados atualizados no painel "Coronavírus (COVID-19)" do Google (Lucena, Alves & Ramos, 2022).

Dessa forma, diversas instituições de ensino migraram para o formato remoto. Foi o caso das disciplinas de Gestão de Inovação de um programa de mestrado profissional, onde o professor optou por utilizar as etapas do *Design Thinking* como metodologia, culminando na entrega de um produto relacionado ao problema em destaque, enfrentando assim o desafio de conduzir uma disciplina de forma remota.

Deste modo, propomos um estudo que explore a experiência de ex-alunos que passaram por um processo de ensino baseado no *Design Thinking* em disciplinas de gestão, e que agora estão atuando profissionalmente. Para tanto, este estudo tem objetiva analisar como a estratégia de ensino do *Design Thinking* influenciou as experiências dos alunos na disciplina de Gestão da Inovação em um contexto de mestrado profissional.

A primeira seção é esta parte introdutória, que apresenta a contextualização, e objetivo da pesquisa e as principais contribuições do trabalho. A segunda seção apresenta a revisão da literatura realizada por meio de revisões sistematizadas simples. A terceira seção descreve os procedimentos metodológicos adotados. A quarta seção apresenta análise e discussão dos resultados encontrados. Por fim, a quinta seção evidencia as conclusões finais do trabalho.

2 Referencial teórico

2.1 DESIGN THINKING

Vianna et al. (2012) delinearam três campos do Design Thinking, correspondendo às etapas mencionadas. A imersão inicial busca compreender o problema e os atores envolvidos, seguida por uma imersão mais profunda, como entrevistas. Na etapa de ideação, ferramentas são empregadas para encontrar soluções adequadas. A fase de prototipagem pode variar de baixa a alta fidelidade, com a última se aproximando mais da solução final (Pinheiro et al., 2012). Essa fase é vista como uma experimentação tangível e crucial no processo de inovação do Design Thinking, destacando a importância de minimizar perdas de significado na construção do protótipo.

Figura 1. Etapas do *Design Thinking* de Vianna et al. (2013)

Os autores enfatizam a natureza iterativa do processo, permitindo retroalimentação para melhorias (Vianna *et al.*, 2012). Serrat (2017) destaca a não linearidade das etapas, categorizadas como inspiração, ideação e implementação. Adotando o *Design Thinking*, buscase facilitar o trabalho em equipe, gerar *insights* e promover métodos inovadores (Kloeckner *et al.*, 2021). Essa abordagem proporciona compreensão aprofundada do problema, interação com stakeholders e desenvolvimento de habilidades (Stock et al., 2018; Silva, 2020). Em resumo, o *Design Thinking* é uma ferramenta valiosa para a inovação (Vianna *et al.*, 2012; Serrat, 2017; Kloeckner *et al.*, 2021; Stock *et al.*, 2018; Silva, 2020).

2.2 APRENDIZAGEM EXPERIENCIAL

A aprendizagem experiencial é um processo de construção de conhecimento derivado da aplicação prática próxima ao mundo real, ocorrendo através de simulações (Yardley *et al.*, 2012; Dieu & Oanh, 2018). Na sala de aula, essa abordagem motiva os alunos, requerendo uma estrutura pedagógica adequada para seu efetivo engajamento (Blair, 2016; Chiu, 2019). Pimentel (2007) destaca que nem toda experiência resulta em aprendizado, enfatizando a necessidade de um ciclo de "ação e reflexão", corroborando com Patil e Meena (2018).

A aprendizagem experiencial, conforme Kolb (1984), é baseada em experiências diretas que constroem conhecimento, habilidades e valores, promovendo novas atitudes e pensamentos (Jacobs, 1999; Patil & Meena, 2018). Kolb (1984) é um precursor da Teoria da Aprendizagem Experiencial (TAE), delineando um ciclo de aprendizagem que explora estágios e estilos de aprendizagem (Figura 2), observando como os indivíduos interagem com o ambiente para transformar conhecimento ao longo da vida adulta.

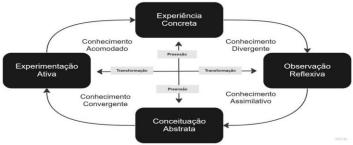


Figura 2. Ciclo da Aprendizagem Experiencial de Kolb (1984)

A formação do ciclo da aprendizagem experiencial integra *insights* de diversos teóricos, como Dewey, Lewin, Piaget, entre outros, abordando a continuidade do fluxo, a interação entre teoria e prática e a modificação das estruturas mentais (Kolb, 1984; Kolb & Kolb, 2005). Este ciclo compreende quatro estágios: Experiência Concreta, Observação Reflexiva, Conceituação Abstrata e Experimentação Ativa. A Experiência Concreta permite aos alunos vivenciar tarefas de forma prática, enquanto a Observação Reflexiva promove a reflexão sobre essas

experiências. A Conceituação Abstrata envolve a aplicação de teorias para compreender os acontecimentos, e a Experimentação Ativa incentiva a aplicação prática e o planejamento (Kolb, 1984).

A aplicação da aprendizagem experiencial oferece vantagens significativas, como conforto, encorajamento, oportunidade de aprendizado ativo e aplicabilidade prática do conhecimento teórico (Krakauer *et al.*, 2017; Dieu & Oanh, 2018). No entanto, desafios como o número elevado de participantes por turma, demanda de tempo, exposição do professor ao risco e avaliações predominantemente qualitativas podem surgir (Krakauer *et al.*, 2017).

O papel do professor é crucial como mediador e facilitador, auxiliando na reflexão e gestão emocional dos alunos, especialmente em simulações de ambientes empresariais (Krakauer *et al.*, 2017; Perusso *et al.*, 2019; Clancy & Vince, 2019). Em estudos de gestão, atividades experienciais são identificadas como essenciais para o desenvolvimento de competências profissionais, destacando-se a importância de parcerias entre instituições de ensino e indústrias para garantir maior realismo nas experiências de aprendizagem (Obi *et al.*, 2021).

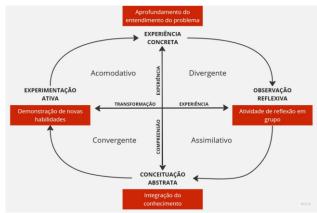
Como prática educacional, a aprendizagem experiencial possibilita simulações realistas de ambientes de negócios, promovendo análises de situações-problema e tomadas de decisão em grupo (Van Hanh, 2020; Sathe & Yu, 2021). A colaboração entre instituições de ensino e empresas é fundamental para enriquecer essas experiências e torná-las mais alinhadas com a prática profissional (Chilton, 2012; Obi *et al.*, 2021).

2.3 *DESIGN THINKING* COMO UMA ESTRATÉGIA DE APRENDIZAGEM EXPERIENCIAL

A integração do *Design Thinking* com as fases experienciais propostas por Kolb (1984) tem sido objeto de análise por diversos estudiosos (Zidulka & Kajzer Mitchell, 2018; Linton & Klinton, 2019). Zidulka e Kajzer Mitchell (2018) destacam a importância de utilizar o *Design Thinking* como uma ferramenta de ensino que promova a aprendizagem experiencial, ressaltando a necessidade de evitar uma abordagem meramente instrumentalista. Ao integrar o *Design Thinking* ao contexto educacional, é possível promover não apenas um processo, mas também uma mentalidade de resolução de problemas, alinhada à aprendizagem experiencial.

Essa integração tem sido explorada em diversas instituições educacionais, que desenvolvem iniciativas focadas no *Design Thinking* como uma forma de oferecer aos alunos uma experiência prática e contextualizada (Zidulka & Kajzer Mitchell, 2018). Por exemplo, os alunos podem receber desafios de design baseados em contextos reais, exigindo a compreensão das necessidades das partes interessadas e o desenvolvimento iterativo de soluções.

Linton e Klinton (2019) enfatizam a importância de incorporar o *Design Thinking* nos currículos de escolas de negócios para que os alunos possam enfrentar desafios do mundo profissional de forma mais preparada. Eles defendem a simulação prática e a aprendizagem ativa como elementos essenciais desse processo.


Os autores também destacam como a condução de projetos por meio do *Design Thinking* pode proporcionar aos alunos a oportunidade de passar pelas quatro etapas do ciclo de aprendizagem experiencial proposto por Kolb (1984) na Figura 1 (Linton & Klinton, 2019). Além disso, identificam aspectos do *Design Thinking* que se relacionam com a aprendizagem experiencial, como natureza iterativa, feedback contínuo, trabalho em equipe e empatia.

Um estudo de Stock *et al.* (2017) explorou a integração entre aprendizagem experiencial e *Design Thinking* como uma abordagem complementar à formação dos alunos para o ambiente de negócios. Os autores relacionam as etapas do ciclo de aprendizagem experiencial com as etapas do *Design Thinking*, buscando identificar essa integração por meio de um questionário chamado Atribuição de Aplicação Pessoal (AAP).

Na Experiência Concreta, os alunos aprofundam sua compreensão do problema, utilizando introspecção e empatia para entender a situação (Stock *et al.*, 2017). Na Observação Reflexiva, eles compartilham suas primeiras impressões e colaboram para compreender diferentes perspectivas. Na Conceituação Abstrata, integram suas experiências com o conhecimento adquirido, ampliando seu entendimento. Finalmente, na Experimentação Ativa, demonstram suas novas habilidades e aprendizados, desenvolvendo competências como trabalho em equipe e avaliação contínua de resultados desejados (Stock *et al.*, 2017).

A Figura 3 do estudo apresenta o modelo adotado pelos autores para ilustrar essa integração entre aprendizagem experiencial e *Design Thinking*. Essa abordagem oferece uma estrutura que permite aos educadores e alunos compreenderem melhor como esses dois conceitos se relacionam e se complementam.

Figura 3. Questionário de AAP à luz da aprendizagem experiencial e *Design Thinking* adaptado de de Stock *et al.* (2017).

A aprendizagem experiencial, integrada ao *Design Thinking*, influencia a formação profissional dos alunos, relevante para o novo contexto de trabalho (Stock *et al.*, 2017; Zidulka & Kajzer Mitchell, 2018; Linton & Klinton, 2019).

3 Procedimentos metodológicos

Neste estudo, adotou-se uma abordagem de pesquisa qualitativa básica, orientada por uma perspectiva construtivista (Merriam & Tisdell, 2015). Uma pesquisa qualitativa básica não se baseia em um conjunto explícito ou estabelecido de premissas filosóficas na forma de uma das metodologias conhecidas ou mais estabelecidas (Caelli, Ray, & Mill, 2003) e não reivindica nenhum ponto de vista metodológico para efetivar seus estudos (Merriam & Tisdell, 2015).

Os participantes deste estudo foram alunos que cursaram a disciplina de Gestão da Inovação em um Programa de Mestrado Profissional em uma Instituição Federal de Ensino Superior (IFES) pública e tiveram experiência com o uso do *Design Thinking* como metodologia de ensino. A disciplina foi realizada de forma remota entre os anos de 2020 e 2022, devido às restrições impostas durante a pandemia da Covid-19, e foi ministrada para três turmas distintas ao longo desses anos, todas vinculadas a um programa de mestrado profissional.

Para a coleta de dados, foi utilizado um roteiro de entrevista semiestruturado (<u>Apêndice A</u>) disponível no material suplementar, permitindo abordar o entrevistado de forma flexível para obter dados previamente estipulados, mas também permitindo a inclusão de novas questões relacionadas ao estudo (Flick, 2009). O roteiro de entrevista foi construído com base na orientação de Vianna *et al.* (2012) para definir as fases do *Design Thinking*, que foram também adotadas pela disciplina, incluindo as ferramentas de apoio sugeridas pelos autores para cada uma das fases, e na observação de Kolb (1984) e Kolb e Kolb (2005) no que diz respeito ao processo de aprendizagem, especificamente a aprendizagem experiencial.

O número de entrevistados foi determinado de forma não intencional (Creswell, 2002), sendo contatados através de grupos da disciplina no aplicativo de comunicação *WhatsApp*. O limite para o número de entrevistas foi definido com base na saturação das respostas (Glaser & Strauss, 1967) obtidas durante as entrevistas, totalizando 13 participantes, com número similar em cada uma das turmas, em média 4 alunos por turma.

A faixa etária dos entrevistados variou entre 30 e 65 anos. Todos os participantes estavam empregados no momento da entrevista, e alguns relataram que a oferta da disciplina durante a pandemia lhes permitiu conciliar estudos e trabalho sem a necessidade de afastamento das atividades laborais. É relevante mencionar que, por ser um mestrado profissional, muitos dos alunos entrevistados trabalhavam na própria instituição que oferece o programa. Também é importante destacar a variedade de formações dos participantes e, em alguns casos, a similaridade, como a presença frequente de graduados em Ciências Contábeis.

As entrevistas tiveram uma duração média de 18 minutos e foram realizadas através da plataforma *on-line* de reuniões *Google Meet*. O <u>Apêndice B</u> (disponível no material suplementar) apresenta informações sobre cada entrevista, incluindo o número de entrevistados, codinomes para preservar a identidade dos respondentes, método de realização da entrevista, data, duração e número de páginas de transcrição dos dados.

Todos os entrevistados foram solicitados a autorizar a gravação das entrevistas em áudio para posterior transcrição. Apenas um dos entrevistados optou por não permitir a gravação, e sua vontade foi respeitada. Neste caso, foram feitas notas em tempo real durante a entrevista para garantir a máxima fidelidade às respostas fornecidas. As entrevistas foram gravadas e transcritas usando o *Microsoft Word*, e os dados foram posteriormente tratados com um *software* de análise qualitativa.

Como parte dos padrões éticos da pesquisa, todos os participantes foram solicitados a assinar o Termo de Consentimento (<u>Apêndice C</u>) disponível no material suplementar. Para as entrevistas realizadas em plataforma virtual, foi solicitada a assinatura *on-line* via *Google Forms*, sob o título "Convite para Participação em Pesquisa". Além disso, a pesquisadora se comprometeu a manter a confidencialidade das informações e a preservar o anonimato dos participantes, formalizado pelo Termo de Confidencialidade (<u>Apêndice D</u>) disponível no material suplementar.

Para atender aos objetivos da pesquisa, foi empregada a análise de conteúdo, especialmente na investigação da percepção dos alunos sobre as etapas do *Design Thinking* durante a disciplina e como eles experienciaram esse processo. A análise de conteúdo permitiu a inferência de conhecimento por meio de procedimentos sistemáticos e objetivos, com base nas percepções dos entrevistados (Bardin, 2016). Esta abordagem envolveu a pré-análise, a exploração do material, o tratamento dos resultados, a inferência e a interpretação (Bardin, 2016).

Na fase de pré-análise, todas as 13 entrevistas foram organizadas e transcritas na íntegra. Essa etapa e as subsequentes foram auxiliadas pelo *software* Atlas.ti versão 23.2.1.26990. Cada entrevista foi cuidadosamente lida, e o processo de tratamento dos dados começou seguindo-se a etapa de exploração do material, conforme sugerido por Bardin (2016).

A segunda etapa de exploração do material envolveu o uso de categorias previamente identificadas com base nas dimensões do roteiro de entrevista e nos objetivos do estudo, incluindo disciplina, fases do *Design Thinking* (imersão, ideação, prototipação) e aprendizado (compreende a aprendizagem experiencial). A literatura sobre ensino baseado em *Design Thinking* contribuiu para a identificação de alguns códigos, conforme mostrado na Tabela 2, que serviram como orientação para a agrupamento de categorias e subcategorias.

Com as categorias, subcategorias, códigos e subcódigos em mãos, representando as citações dos entrevistados, procedeu-se à terceira fase proposta por Bardin (2016) para o

5

tratamento e interpretação dos dados obtidos. Essa etapa guiou a análise e interpretação dos resultados do presente estudo, conforme descrito no próximo tópico.

4 Análise e interpretação dos dados

Na fase de pré-analise foram, foram identificados 53 códigos. No entanto, na fase de exploração do material observou a repetição e possibilidade de integração dos códigos, o que reduziu esse número para 29 códigos. Nesta fase, foram identificados aspectos das falas que representaram os subcódigos negativo, positivo e neutro junto nas categorias "imersão", "ideação" e "prototipação". Enquanto na categoria "aprendizado" foi observado a intensidade da presença dos códigos. O <u>Apêndice E</u> (disponível no material suplementar) demostra as categorias, subcategorias e códigos identificados nesta fase.

Na delimitação das categorias, subcategorias e códigos, observa-se no <u>Apêndice F</u> (disponível no material suplementar) a distribuição dos entrevistados e das citações com base nas categorias pré-definidas no estudo, bem como aquelas que emergiram das falas. Nota-se que grande parte das citações está relacionada a códigos dentro da categoria "aprendizado" que aparece com 50 citações identificadas ao longo das falas dos entrevistados.

Lucas foi o participante com o maior número de falas correspondentes às categorias do estudo, com aproximadamente 23 citações. Isso pode indicar uma boa lembrança das experiências e conceitos da disciplina de Gestão da Inovação, orientada pelo *Design Thinking*. Em seguida, as alunas Rita e Paloma tiveram 18 e 13 citações, respectivamente. Os participantes com o maior número de citações são de turmas dos anos de 2020 e 2021, sugerindo que o parâmetro temporal não afetou significativamente o processo de memorização ao recordar a vivência da disciplina nesse período.

A Figura 4 apresenta as subcategorias e subcódigos associados à categoria "imersão". As cores indicam a frequência das falas: quanto mais escura a cor, maior a frequência; quanto mais clara, menor a frequência.

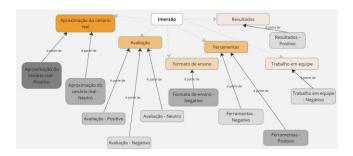


Figura 4. Imersão.

A fim de trazer um maior nível de detalhamento dos códigos e subcódigos, bem como atrelado as respostas por entrevistados, o <u>Apêndice G</u> (disponível no material suplementar) apresenta os quantitativos referentes aos códigos e subcódigos por entrevistas aferidos na categoria "imersão". Os subcódigos alinhados a cada um dos códigos são abreviados de positivo (pos), negativo (neg) e neutro (neu).

Nesta categoria, o código "aproximação do cenário real" foi o mais frequentemente mencionado pelos alunos na fase de imersão, sendo destacado de forma expressiva em suas falas como um aspecto positivo. Além disso, conforme esperado para esta fase, houve a presença de atores externos que auxiliaram nesse primeiro contato com o cenário, como evidenciado nas falas.

A gente decidiu falar com alguns colegas, trabalhar com a própria NOME DA INSTITUIÇÃO, que trabalhavam diretamente com essa, tanto com algum relatório, como pessoas também da área de comunicação. E aí foi muito importante também, porque a gente começou a dar mais, uma visão mais ampla da temática, sabe? Tem isso também. Falar com pessoas, com outros atores, principalmente do setor de comunicação. (Carlos).

CIK 13th INTERNATIONAL CONFERENCE

Essa abordagem permite que o aluno lide melhor com as tensões e problemas eventuais da inovação, uma vez que é incentivado a pensar em soluções para os problemas apresentados na disciplina. Carlos destacou a perspectiva de uma "visão mais ampla da temática".

A função de instigar o aluno a identificar os atores envolvidos e se aproximar do cenário real coloca-o como o centro do processo, promovendo uma busca ativa. Isso pode levar ao desenvolvimento de habilidades importantes, conforme apontam Linton e Klinton (2019). Nesse contexto, observa-se que os alunos podem ir além da simples análise do cenário, fazendo reflexões mais amplas sobre os problemas institucionais. Um entrevistado relatou: "[...] é muito engraçado perceber que é exatamente a mesma coisa. Em todo lugar, o problema é o mesmo." (Daiana).

Observa-se que, durante a fase de imersão, os alunos são capazes de transcender o estudo baseado no conhecimento do problema apresentado e estabelecer conexões com suas próprias experiências profissionais e pessoais. Por exemplo, o código "avaliação" é percebido de maneira mais positiva, enquanto a presença de ferramentas de apoio nesse processo é considerada fundamental. No entanto, é notável que essa presença possa ocasionalmente causar confusão, como indicado pelos relatos dos participantes.

Assim, eu acho que deu muita, trouxe muita objetividade, sabe? Porque no início eu achei assim, eu achava que o trabalho ia ser muito difícil de fazer, porque eu achei muita teoria, muita mudança, como que a gente vai fazer isso? E essas ferramentas, elas ajudaram muito a ter foco, a ser objetiva no que a gente queria. Então, à medida que a gente ia construindo o mapa de empatia, eu achei bem bacana. Aí as entrevistas, a questão dos insights, estou me lembrando aqui. Aí a gente, então assim, aos poucos a gente foi realmente descobrindo de forma bem natural. [...] E essas ferramentas, elas ajudaram muito a ter foco, a ser objetiva no que a gente queria. Então, à medida que a gente ia construindo o mapa de empatia, eu achei bem bacana. (Tatiana).

A primeira impressão eu achei bem interessante [fase de imersão]. Porque, como eu falei, era tudo novidade. Eu confesso que até eu demorei um pouco pra entender como era a dinâmica do processo. Assim, qual era a proposta e onde a gente iria chegar. Porque, de início, foram[...]Pelo menos para mim, né? Que não tinha nenhuma vivência disso. Foram colocadas muitas ferramentas. (Rita).

A presença de ferramentas de apoio neste estágio inicial foi percebida como vantajosa por Tatiana; entretanto, pode ter representado obstáculos para Rita. No âmbito da disciplina de Gestão da Inovação, foram adotadas as ferramentas sugeridas por Vianna *et al.* (2012). Essas ferramentas foram empregadas na fase inicial de imersão, incluindo o mapa de contexto e entrevistas com diversos *stakeholders*, bem como na etapa de imersão mais aprofundada, que envolveu o uso do mapa de empatia, cartões de *insights* e diagrama de afinidades, além de entrevistas mais detalhadas para compreender os desafios enfrentados pela instituição.

Todos os pontos mencionados foram considerados com o objetivo de proporcionar ao aluno uma melhor compreensão do contexto do problema a ser estudado. No entanto, um aspecto que também surgiu durante a imersão foi o "formato de ensino", que se deu em consonância com a modalidade de ensino vigente no período, utilizando-se do ensino remoto e recursos tecnológicos para tal suporte.

A imersão foi feita de forma muito limitada, porque se tivesse [...]. Acredito que o que limitou essa imersão foi... Acredito não, com certeza foi a questão do isolamento, da pandemia, da gente não poder se reunir. Então, foi tudo muito via ferramentas de tecnologia da informação.
[...] foi tudo muito limitado por conta do isolamento. (Paloma).

Ao abordar a questão da imersão e observar a condução da disciplina através do ensino remoto, é evidente uma certa insatisfação expressa pelos participantes, como exemplificado por Paloma, em relação à modalidade de imersão adotada, a única viável para o período em questão. Embora a utilização da tecnologia tenha sido intensificada devido às demandas do momento, Tarabasz *et al.* (2018) argumentam que o emprego da tecnologia em sala de aula pode preparar os alunos para os desafios emergentes do mercado de trabalho, especialmente quando incorporados conceitos como "sala de aula do futuro" e "sucesso no mundo digital".

No que diz respeito ao uso de "ferramentas", código seguinte, Rita apresenta sua opinião sobre a utilização de ferramentas durante a etapa de imersão, especialmente aquelas que abordavam os aspectos tecnológicos.

Então, foram muitas ferramentas digitais, simultaneamente e apresentadas em um curto período de aula. Então, assim, de início eu me perdi um pouco. Para onde a gente vai? O que é que tem que fazer? Como é? E eu sou bem, assim, metódica. Então, eu queria estar entendendo exatamente o que a gente ia fazer. (Rita).

Durante a entrevista, foi destacada a importância de ter cuidado ao fornecer uma quantidade excessiva de informações, pois isso pode sobrecarregar o processo de ensino e entrar em conflito com um dos principais objetivos do *Design Thinking*, que é facilitar a aprendizagem. Essa preocupação se torna evidente quando o entrevistado menciona a sobrecarga causada pela disponibilização excessiva de ferramentas. Embora o trabalho em equipe tenha sido identificado como um elemento importante, foi mencionado em menor escala nesta etapa em comparação com outros aspectos já discutidos, embora ganhe maior relevância na fase de ideação.

Durante o período de restrições físicas e a adoção emergencial do ensino remoto, o último código desta categoria, "resultado", enfatizou a visualização do cenário real como seu ponto central. Como resultado desta etapa, foi obtida uma perspectiva positiva, conforme expressado por Paloma: "[...] ainda assim, conseguimos fazer bastante. Foi proveitoso. Nós alcançamos um bom resultado com a imersão". (Paloma). Depreende-se, em linhas gerais, uma visão positiva do que foi a etapa de imersão para os entrevistados que a vivenciaram no período de 2020 a 2022.

Na etapa de ideação, que aqui elevamos a categoria, Vianna *et al.* (2012) a descrevem como um momento de "aprofundamento do problema". Nesta fase, destacam-se vários aspectos importantes, como a integração do trabalho em equipe, a avaliação da etapa, o conhecimento das etapas do *Design Thinking*, o uso de ferramentas apropriadas, a aproximação com o cenário local e a gestão do tempo de execução. A Figura 5 apresenta a relação da categoria ideação.

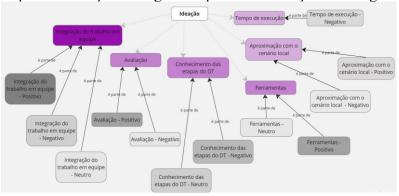


Figura 5. Ideação.

Durante essa etapa, foi observada uma maior diversidade na percepção dos alunos em relação aos códigos identificados. A integração foi predominantemente considerada um aspecto positivo. Por outro lado, o conhecimento, ou a falta dele, das etapas do *Design Thinking* foi percebido como um fator que pode ter impactado negativamente. O <u>Apêndice H</u> (disponível no material suplementar) apresenta, de forma detalhada, os códigos e subcódigos da etapa de "ideação".

A integração do trabalho em equipe foi o aspecto mais destacado nessa segunda fase. Nesse ponto, observou-se uma demanda crescente por maior colaboração entre os alunos, e o uso do *Design Thinking* revelou-se especialmente eficaz. Este método facilita a formação de equipes com *backgrounds* variados, o que enriquece a perspectiva sobre o processo (Reis *et al.*, 2019). Embora essa diversidade possa ser benéfica, conforme mencionado, também pode ocasionar alguns conflitos devido às diferenças.

Uma ideia bobinha, que o outro vai e acrescenta. A gente pode fazer assim, acrescentando tal coisa, e que o outro vai. É como se fosse fazendo uma costura, e quando a gente vê, está lá o modelo completo. (Paloma).

É interessante a perspectiva de Paloma sobre a metáfora da "costura", onde cada um faz sua parte. Observou-se nesta fase, dentro do código "avaliação", que a proposta de soluções sem julgamentos não foi algo fácil, especialmente devido a pensamentos pré-concebidos.

Uma das coisas que a gente tem dificuldade é a questão do julgamento, né? Por mais que a gente diga não, é para falar. Qualquer besteira você fala, porque é sem julgamento. Depois que a gente vai passar por uma fase que aí você vai ver o que é que você vai fazer, o que faz

sentido, o que não faz sentido. Então, existe, a gente sempre tem aquele negócio de não, acho que vou falar besteira. Eu acho que isso é uma besteira. Mas foi bem válido essa fase de ideação, né? (Tatiana).

Brown (2010) afirma que o *Design Thinking* não é uma forma de pensamento em grupo, mas sim que ocorre em grupos. O *Design Thinking* busca, essencialmente, "liberar a criatividade". Ao analisar as falas dos entrevistados, nota-se que eles consideraram a tarefa de "pensar sem julgamento", conforme mencionado por Tatiana, como algo desafiador.

Ao contrário das categorias mencionadas anteriormente na literatura, para os entrevistados, o "conhecimento das etapas do *Design Thinking*" gera uma experiência diferenciada.

As pessoas entenderam. Porque num processo desse era importante haver uma breve preparação das pessoas. A gente já foi de cara, né? Então é meio complicado. Mas, assim, olha, o que é o Design Thinking? O que são as fases, né? Como é que vocês devem se portar, se comportar e tudo mais e tal. A gente ganharia mais tempo. Mas, mesmo assim, foi muito proveitoso. (Lucas).

Durante a experiência na disciplina, foram vivenciadas todas as fases do processo. Observou-se, porém, que os entrevistados, anteriormente na condição de alunos, careciam de conhecimento prévio tanto para si mesmos quanto para poder contribuir efetivamente, conforme mencionado por Lucas. Ao abordar a etapa de utilização das "ferramentas", a sugestão para essa fase do *Design Thinking* no ensino era disponibilizar instrumentos como o cardápio de ideias, a matriz de posicionamento e o brainstorm, com os alunos também podendo contar com o suporte de outras ferramentas da disciplina.

O uso do Trello nesse processo foi primordial, a ferramenta kanban, facilitou a organização. As ferramentas ajudaram demais. Os cartões de insight a gente entendeu como solução e não batia aquilo ali, tínhamos que ver o problema com a turma. (Eduarda).

Eduarda menciona a presença dos cartões de *insight*, sugeridos para a etapa de imersão, e os confronta na etapa de ideação. Isso pode sugerir a possibilidade de retornar a outras fases no *Design Thinking*, em vez de seguir uma trajetória totalmente linear, como afirma Serrat (2017). Além disso, ela acrescenta que as fases podem se repetir ao longo de todo o processo.

A "aproximação com o cenário local" também foi um dos códigos citados pelos alunos nessa etapa. No entanto, outro código que chamou a atenção dos alunos ao refletirem sobre essa fase da disciplina foi o "tempo de execução". Por ser uma etapa de aprofundamento, como mencionado anteriormente, o fator tempo parece ter sido limitante.

A troca de ideias foi bem tranquila em relação ao grupo. Mas, se a gente tivesse mais tempo, talvez a gente tivesse debatido mais. Tivesse explorado mais as ideias. Mas, no tempo que tinha, a gente conseguiu fazer algo bem interessante. (Rita).

É importante destacar que esta disciplina possui uma carga horária de 30 horas, o que provavelmente exigiu que as entregas fossem ajustadas a esse período. No entanto, o entrevistado afirmou que isso não afetou negativamente a avaliação dos resultados gerados nessa fase, embora ele tenha mencionado que poderia ter explorado um pouco mais.

A prototipação representa a fase final do ciclo do *Design Thinking* e que também corresponde a uma categoria neste estudo. Durante essa fase, são considerados aspectos como avaliação, interação do grupo, viabilidade da solução desenvolvida, construção, ensino remoto e prazo de entrega. Esses aspectos e seus subcomponentes estão detalhados na Figura 6.

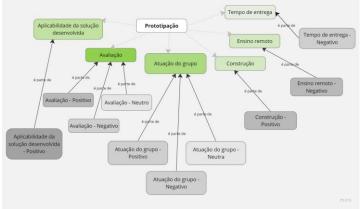


Figura 6. Prototipação.

A etapa de prototipação representou a última entrega realizada durante a disciplina, sem, contudo, excluir a possibilidade de revisitar fases anteriores, como a imersão e a ideação. A avaliação geralmente inclinou-se para um viés positivo, embora tenha evidenciado alguns aspectos negativos, possivelmente relacionados aos termos "ensino remoto" e "tempo de entrega". Detalhes das citações dos entrevistados sobre esta fase estão apresentados no Apêndice I, juntamente com a associação aos códigos e subcódigos correspondentes.

Em relação ao código "avaliação" desta fase, observou-se uma tendência predominante para avaliações positivas, embora ainda haja margem para melhorias em alguns aspectos.

[...] seria bom ouvir novamente, não um processo de ideação, mas para dizer, olha, o que encontramos com isso, para as pessoas darem ajuda. [...] A gente não chegou a isso, não passou por isso, mas fomos para a validação. Aí sim, houve algum retrocesso, teve que voltar um pouquinho e tal, mas terminou tudo bem, uma fase também muitíssimo importante, e assim, eu digo que foi a fase mais trabalhosa, certo? (Lucas).

Segundo uma das entrevistadas, Paloma, as fases foram avaliadas como "divertidas" e "interativas", porém, também foram vistas como "mais trabalhosas", conforme destacado por Lucas. Mais uma vez, a ideia de "voltar um pouquinho" demonstra a flexibilidade e como isso pode contribuir para alcançar melhores resultados.

A "atuação do grupo" também foi fundamental como um código de expressão durante o processo de prototipagem. Percebe-se que essa categoria, amplamente discutida na literatura sobre ensino de *Design Thinking*, permeou todas as etapas do processo, sendo central na condução da disciplina.

[...] para resumir, cada um tinha uma formação distinta e aí a gente teve a possibilidade de explorar diferentes perspectivas de solução. Porque como as formações eram distintas, cada um enxergava como mais importante um aspecto do problema. Então foi muito debate. Foi tanto que teve que fazer votação para ver qual solução seria a ganhadora. A gente ranqueou os problemas para poder fazer uma votação e ter um consenso do que é que a gente iria atacar. (Pedro).

Como enfatizado por Reis *et al.* (2019), a formação de grupos heterogêneos amplia as perspectivas. No entanto, durante a fase de finalização e prototipagem, observou-se que surgiram discussões, exigindo intervenções por parte dos grupos para atenuar esses dilemas, como mencionado por Pedro na ferramenta de ranqueamento de problemas.

O código "aplicabilidade da solução desenvolvida" foi considerado relevante pelos alunos, especialmente porque muitos deles são da própria instituição e viram seus protótipos sendo propostos para aplicação. Um dos protótipos gerados foi uma proposta de minuta. Conforme afirmou Daiana, a Pró-Reitoria em si sugeriu a redação do prêmio de forma semelhante àquela proposta pelos alunos durante o desenvolvimento do protótipo na disciplina.

A "construção" dessa etapa foi algo que os alunos citaram como positivo.

É muito lindo o processo de cocriação. Sai do nada e do contexto da Período Letivo Suplementar. A metodologia do Design Thinking é rica e como se aprende ao longo do processo. (Eduarda).

Um ponto interessante destacado por Eduarda durante todo o processo de aprendizagem foi a maneira como este se desenvolveu ao longo do tempo, especialmente durante a execução da disciplina, que ocorreu predominantemente por meio do ensino remoto. Ao abordar esse aspecto, o código "ensino remoto" emergiu como um tema importante durante a etapa de prototipagem.

Essa é a questão do protótipo, que foi meio estranho, assim, porque a gente estava num momento completamente virtual, né, todo mundo nas suas casas, nas suas trincheiras, e era tudo virtual.(João).

Ao abordar o ensino, percebe-se que o ensino remoto teve um impacto positivo ao mesmo tempo em que impôs limitações na visão dos alunos. No entanto, o período em que essa transição ocorreu pode ter influenciado na percepção dos alunos. Assim como na imersão, o aspecto temporal também foi considerado como um elemento que produziu efeitos, embora se tenha imaginado que "ter mais tempo" estivesse diretamente relacionado à obtenção de melhores resultados.

Então, assim, eu acho que foi muito legal. Até uma vez, eu conversando assim, só foi muito intenso. Ao ponto de ser assim, 'pera at', eu acho que não há sustentabilidade a longo prazo com a intensidade alta. Porque eu trabalho na gestão da equipe, e eu sei que se a gente tiver uma intensidade muito alta, a gente não consegue... Manter um grau de motivação por um tempo, entendeu? Porque você cansa muito a equipe. É uma maratona, não é uma corrida de 100 metros. (Carlos).

Carlos faz uma analogia entre o conceito de tempo e sua aplicação no contexto real de trabalho, e reflete que esse modelo não seria sustentável a longo prazo. Durante a aplicação do

Design Thinking para desenvolver soluções na disciplina de Gestão da Inovação, um dos objetivos principais é identificar as contribuições das etapas desse processo para a aprendizagem.

Na categoria "Aprendizado", buscamos verificar as impressões dos alunos sobre a aplicação da aprendizagem experiencial na condução da disciplina guiada pelo *Design Thinking*. Foram definidas previamente quatro subcategorias de aprendizagem, baseadas em Kolb (1984), relacionadas aos aspectos observados nos códigos de ensino do *Design Thinking*. Isso foi feito para analisar a vinculação da aprendizagem experiencial (Stock *et al.*, 2017; Zidulka & Kajzer Mitchell, 2018; Linton & Klinton, 2019). A relação entre as subcategorias e os códigos é apresentada na Figura 7.

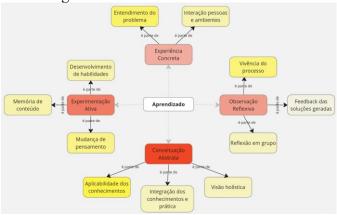


Figura 7. Aprendizado.

Com base no estudo de Stock *et al.* (2017), a aprendizagem experiencial é vinculada ao *Design Thinking* em cada uma das fases do ciclo proposto por Kolb (1984). Na fase de "experiência concreta", ocorre o "entendimento do problema" e a "interação de pessoas e ambientes". Segundo os autores, é nesta fase que se aprofunda a compreensão da situação.

É interessante que o método faz com que a gente perceba inúmeros problemas e a gente tem que reduzir, reduzir, reduzir pra chegar no [problema] e trabalhar em cima dele. (Lucas).

Nós entrevistamos, eu acho que o pessoal do abastecimento de materiais, do departamento de materiais da universidade. Entrevistamos também o pessoal que faz o planejamento estratégico, trabalhar na reitoria. Entrevistamos, acho que o pessoal da contabilidade também. E diante disso a gente constatou que realmente havia uma carência nessa parte, né... (Renato).

Pode-se compreender, a partir das falas dos entrevistados, qual é o problema da instituição a ser resolvido ao longo da disciplina. Kolb e Kolb (2005) relacionam esse aspecto a uma das seis dimensões da TAE, ao afirmar que o aprendizado advém da sinergia entre as pessoas e os ambientes. Isso resulta na vinculação dos alunos aos conhecimentos já adquiridos e na criação de novas experiências. O "entendimento do problema" é um elemento novo que surge na pesquisa.

Em seguida, temos a subcategoria "observação reflexiva". Kolb (1984) destaca a importância de refletir sobre as experiências vividas nessa etapa. No contexto do *Design Thinking*, essa etapa pode ser implementada por meio da "reflexão em grupo", onde se busca compreender as primeiras impressões sobre o fenômeno e outros aspectos relevantes (Stock *et al.*, 2017). Além da "reflexão em grupo", foram identificados os seguintes códigos atrelados a essa categoria: "vivência do processo" e "feedback das soluções geradas". Dentre esses, o código "vivência do processo" destacou-se como o mais valioso, representando a importância da aprendizagem experiencial proporcionada pela condução da disciplina através do *Design Thinking*.

A metodologia do Design Thinking é rica e como se aprende ao longo do processo. (Eduarda).

Porque ver a coisa acontecendo tem um impacto muito forte. [...] Às vezes a gente faz, faz, faz e não consegue entender exatamente o que foi. E aí? Qual é o suco desse trabalho? O que a gente extrai? E aí, essa proposta que NOME DO PROFESSOR trouxe, ela foi rica por causa disso. Porque a gente consegue enxergar. (Ana).

Tanto é que eu estou fazendo essa entrevista com você e eu nem li o que a gente fez lá, eu ia fazer isso e esqueci, e estou tentando lembrar que durante a nossa conversa, o que a gente fez, as fases, as técnicas, então acho que ficou isso. (Tatiana).

Kolb e Kolb (2005) defendem seis proposições da aprendizagem experiencial e alguns delas encontram suporte na fala dos entrevistados, como: visão de aprendizagem como processo (Eduarda); visão de reaprender (Ana); orientar o aluno na resolução de conflitos (Ana); e aprender como um processo de criação e recriação de conhecimento (Ana, Tatiana). A "vivência no processo" é um elemento novo que surge na pesquisa.

A terceira subcategoria, "conceituação abstrata", é relacionada por Stock *et al.* (2017) ao momento em que o conhecimento é integrado. Essa observação é derivada do *Design Thinking* e é evidenciada nos códigos "aplicabilidade dos conhecimentos", "integração do conhecimento na prática" e "visão holística".

O primeiro código citado na subcategoria refere-se à possibilidade de aplicar ferramentas no contexto do ambiente de trabalho, o que se assemelha à integração do conhecimento na prática. Nesse contexto, o aluno relata "ver as coisas acontecendo", o que se entrelaça com a visão holística de aplicabilidade da teoria. Esses fatos estão alinhados com os princípios da aprendizagem experiencial, pois permitem ao aluno construir conhecimento através da aplicação prática, mitigando o distanciamento do "mundo real" e possibilitando simulações (Yardley *et al.*, 2012; Dieu & Oanh, 2018).

[...] a gente aplicando no nosso trabalho, no nosso estudo, né? Trazendo uma experiência viva, a gente chama assim, né? Experiência viva para o dia a dia do nosso trabalho. Ficou muito bom, porque não ficou aquela coisa muito em tese, certo? Muito teórica... (Lucas).

Foi um aprendizado que a gente pode usar não só na disciplina, mas você pode utilizar essa ferramenta. A ferramenta é desenvolvida e utilizada em outros campos. E eu sinto que se eu precisar dela em outros lugares, aqui no trabalho, principalmente, eu consigo trazer, adequar e realizar. (Fátima).

Eu acredito que, assim, eu posso resumir que foi uma experiência bem rica mesmo. Como eu falei, eu não tinha nenhum conhecimento e eu saí da disciplina com uma experiência bem construtiva, muito conhecimento prático, teórico-prático. Mas, o fato de a gente estar vivendo e aplicando, vivendo e aplicando, foi bem construtivo. (Rita).

Eu chamava isso de "FAZAP", fazendo e aprendendo, não é? Eu acho que é uma das técnicas melhores que pode ter para você fazer aprendizado de coisas profissionais, de que você vai aplicar na prática. (Renato).

O aprendizado da disciplina foi descrito pelos entrevistados como uma "experiência viva" (Lucas), destacando que "não ficou algo muito teórico". Essa descrição se assemelha ao conceito de experimentação concreta proposto por Kolb (1984), uma vez que o entrevistado não apenas vivenciou as tarefas, mas também se envolveu em ações que exigiram planejamento, uso de ferramentas e processos decisórios ao longo da disciplina. De acordo com o ciclo de Kolb (1984), isso representa um aspecto significativo da aprendizagem experiencial.

Fátima vê a disciplina como uma oportunidade de aplicação em seu ambiente de trabalho, como resultado do aprendizado adquirido. Rita, por sua vez, enfatiza o aspecto teórico-prático inserido na aprendizagem experiencial. Renato, outro entrevistado, criou a nomenclatura "FAZAP" (fazendo e aprendendo) para descrever a metodologia da disciplina, destacando que, em sua visão, a melhor forma de aprender é tendo a oportunidade de aplicar o conhecimento na prática. A "a aplicabilidade do conhecimento" é um elemento novo que surge na pesquisa.

No encerramento do ciclo, está a "experimentação ativa", que, em relação ao *Design Thinking*, representa o momento em que se percebem novas habilidades que podem ser geradas, bem como novos entendimentos e informações para o futuro (Stock *et al.*, 2017). Nessa subcategoria, encontram-se os códigos "mudança de pensamento", "memória de conteúdo" e "desenvolvimento de novas habilidades".

Um dos códigos até então não identificados na literatura, que pode estabelecer um paralelo com a aprendizagem experiencial através do *Design Thinking*, é a "memória do conteúdo" abordado na disciplina.

Eu acho que aprender de maneira experiencial facilita a sedimentação do conhecimento. Então é tanto que a gente está falando de 2021, a gente está em 2023 e eu estou recordando, como você deve ter percebido, eu não fui visitar o conteúdo. Eu poderia ter feito isso. Visitar o

conteúdo antes de vir fazer essa entrevista, porque eu saberia, resgataria na memória tudo com a maior facilidade. Eu não fiz isso e eu estou lembrando de um nível de detalhes que para mim até me assusta, porque foi muito intensa a disciplina. (Pedro).

A entrevista foi realizada em 2023 com todos os entrevistados que haviam cursado a disciplina entre 2020 e 2022. Durante a entrevista, mesmo com o passar do tempo, observou-se um nível de detalhamento que se destacou. Alguns entrevistados tiveram dificuldade em lembrar, enquanto outros recorreram a consultas rápidas. No entanto, a maioria conseguiu recordar espontaneamente.

Este aspecto aponta para um fator positivo: tornar prático o ensino da disciplina de Gestão da Inovação através do uso do *Design Thinking*. No entanto, ainda se menciona a intensidade (Pedro) e alguns aspectos que poderiam ser melhorados na oferta da disciplina, devido às restrições de tempo. A "mudança de pensamento" parece ter sido um ponto que pode ter influenciado nos bons resultados citados pelos entrevistados.

Então, é uma ferramenta que, a princípio, quando você não conhece, você fica um pouco perdido. Como é que isso funciona? Mas depois que você entende o processo, você consegue ter um resultado muito positivo. E foi isso que eu senti. (Fátima).

Quem não conhece Design Thinking entende que a experiência de desenvolver uma nova ideia, uma inovação, é apenas você ser criativo. Né? E, na verdade, não. Ele tem método, tem estrutura, e o método e a estrutura ajudam não só a você desenvolver ideias, independentemente da criatividade, né? Mas, de forma mais assertiva e com foco no que é, no que é tocado, que é o problema. (Daiana).

Quando Daiana menciona que existe um equívoco ao associar o *Design Thinking* estritamente à criatividade, destaca-se a mudança de perspectiva que encontra respaldo, especialmente no contexto educacional, pela capacidade de promover relações de aprendizagem ativa e colaborativa, facilitando assim o processo educacional (Silva, 2020). Esse entendimento se torna mais claro à medida que se utiliza essa ferramenta através do conhecimento, conforme mencionado por Fátima.

Desta forma, embora a maioria dos entrevistados tenha enfatizado que a condução do *Design Thinking* era predominantemente prática, o que poderia resultar em um maior número de relatos de experimentação ativa, a conceptualização abstrata foi a subcategoria mais recorrente. Isso corrobora a ideia de integração do conhecimento, conforme observado nos códigos relacionados ao *Design Thinking*, destacando seu aspecto de aplicabilidade.

5 Considerações finais

A experiência de ensino da disciplina de Gestão da Inovação em um programa de mestrado profissional foi amplamente percebida como positiva pelos entrevistados, ex-alunos da disciplina. A condução do curso seguiu as etapas e ferramentas sugeridas por Vianna *et al.* (2012), aplicadas de forma prática junto aos alunos. Dentre os pontos destacados sobre a experiência, a vinculação dos problemas a contextos reais, a integração do trabalho em equipe e a possibilidade de aplicação das soluções desenvolvidas foram considerados aspectos valiosos pelos entrevistados.

Dessa forma, o objetivo da pesquisa foi analisar como a estratégia de ensino do Design Thinking influenciou as experiências dos alunos na disciplina de Gestão da Inovação em um contexto de mestrado profissional. Identificou-se que *o Design Thinking* permitiu aos alunos se aprofundarem no problema a ser desenvolvido e mergulharem em uma experiência de entregar uma solução prática, que poderia ser aplicada de fato, em uma disciplina de 30 horas semestrais.

Os resultados indicaram que cada fase do *Design Thinking*, conforme sugerido por Vianna *et al.* (2012), apresentava aspectos mais relevantes dependendo da etapa. Embora muitos desses aspectos, como o trabalho em equipe, fossem recorrentes, outros, como o tempo, variavam. Ainda como resultado, percebeu-se um aprendizado que vincula teoria e prática de forma fluida, conforme relatado, e evidenciado ao se conectar com as etapas do ciclo de aprendizagem experiencial e o *Design Thinking* no ensino, especialmente na etapa de "conceituação abstrata" (Kolb, 1984; Stock *et al.*, 2017). A "memória do conteúdo" foi um dos aspectos relevantes do estudo, compreendida como uma consequência semelhante desse "viver o processo" de condução da disciplina pelo *Design Thinking*.

Como contribuições sociais deste estudo, espera-se que suas descobertas não apenas aprimorem significativamente a experiência de ensino por meio do *Design Thinking* como metodologia ágil, mas também inspirem os educadores a criar ambientes propícios para a aprendizagem experiencial. Ao assumir um papel de orientador, onde o aluno é central no processo educacional, os professores podem não só facilitar o aprendizado, mas também promover o desenvolvimento de habilidades sociais essenciais, como colaboração e resolução de problemas.

Além disso, o estudo destaca desafios potenciais ao implementar o *Design Thinking* em ambientes com grupos heterogêneos, enfatizando a importância de estratégias adaptativas e do suporte contínuo por parte dos professores. Essa abordagem não apenas prepara os alunos para enfrentar desafios complexos no mundo real, mas também fortalece a capacidade da educação de promover inovação e desenvolvimento sustentável na sociedade.

Como contribuição gerencial, espera-se apoiar o ensino na criação de ambientes cada vez mais conectados com problemas reais de organizações existentes ou da sociedade. Após o período de ensino remoto integral, os resultados obtidos atestaram a necessidade de interações presenciais. No entanto, é possível utilizar mecanismos mistos, presenciais e virtuais, dependendo da fase.

Como contribuição científica, este trabalho fortalece a discussão sobre o ensino guiado pelo *Design Thinking*, destacando essa metodologia como uma forma de aprendizagem experiencial. Ele acrescenta novos *insights* à literatura existente, como a "memória de conteúdo" ao longo do tempo. Além disso, enfatiza a importância do *Design Thinking* na aproximação do cenário real, permitindo a integração entre teoria e prática. Essa abordagem centrada no aluno promove o desenvolvimento de habilidades essenciais e a capacidade de lidar com problemas inerentes ao processo de inovação, especialmente no contexto da gestão (Linton & Klinton, 2019; Figueiredo, 2021).

Como principais limitações do estudo, pode-se destacar o número reduzido de participantes. Apesar de ter sido utilizada a técnica de saturação (Glaser & Strauss, 1967) para determinar o quantitativo das entrevistas e observado o fator tempo, o estudo incluiu apenas três turmas de um mesmo programa de mestrado profissional, todas da mesma disciplina e ministradas por um único professor. Essa homogeneidade pode ter influenciado os resultados, já que a comparação entre as turmas dos anos de 2020, 2021 e 2022 não revelou grandes diferenças.

Diante das limitações, sugere-se ampliar o estudo para incluir outras experiências em disciplinas além do mestrado profissional, como em turmas de graduação e de mestrado/doutorado acadêmicos, em instituições públicas e privadas.

Além disso, recomenda-se a realização de um estudo de caso com uma turma específica, permitindo que o pesquisador acompanhe de perto todo o processo de condução da disciplina, guiada pela metodologia de *Design Thinking*, e triangule essas observações com entrevistas junto aos alunos. Também seria valioso conduzir estudos quantitativos, utilizando questionários e análises estatísticas, para obter uma compreensão mais ampla e robusta dos impactos dessa metodologia em diferentes contextos educacionais.

REFERÊNCIAS

Bardin, L. (2016). Análise de conteúdo. (70a ed.). Edições.

Blair, D. J. (2016). Experiential Learning for Teacher Professional Development at Historic Sites. *Journal of Experiential Education*, 39(2), 130–144. https://doi.org/10.1177/1053825916629164

Brown, T. (2009). Change by design. HarperBusiness.

Brown, T. (2010). *Design Thinking*: uma metodologia poderosa para decretar o fim das velhas. Elsevier.

- Caelli, K., Ray, L., & Mill, J. (2003). 'Clear as mud': toward greater clarity in generic qualitative research. *International journal of qualitative methods*, 2(2), 1-13. doi: 10.1177/160940690300200201
- Chilton, M. A. (2012). Technology in the classroom: Using video links to enable long distance experiential learning. *Journal of Information Systems Education*. 23(1). 51-62.
- Chiu, S. K. (2019). Innovative experiential learning experience: Pedagogical adopting Kolb's learning cycle at higher education in Hong Kong, *Cogent Education*, 6(1), 1-16. https://doi.org/10.1080/2331186X.2019.1644720
- Clancy, A., & Vince, R. (2019). If I Want to Feel My Feelings, I'll See a Bloody Shrink: Learning From the Shadow Side of Experiential Learning. *Journal of Management Education*, 43(2), 174–184. https://doi.org/10.1177/1052562918817931
- Creswell, J. W. (2010). *Projeto de pesquisa*: métodos qualitativo, quantitativo e misto. (3a ed.). Artmed.
- Dieu, H., & Oanh, D. (2018). Experiential Learning Activities of Technical Students at Higher Education Institutions in Vietnam. *Universal Journal of Educational Research*, 6, 2310-2319. https://doi.org/10.13189/ujer.2018.061030
- Figueiredo, M. D. (2021). Design is cool, but... A critical appraisal of design thinking in management education. *The International Journal of Management Education*, 19(1). https://doi.org/10.1016/j.ijme.2020.100429
- Flick, U. (2009). Introdução à Pesquisa Qualitativa. (3a ed.). Artmed.
- Gharajedaghi, J. (2010). From Operation Research to Cybernetics and Finally to Design Thinking. In M. Shamiyeh (Ed.), *Creating Desired Futures: How Design Thinking Innovates Business* (pp. 105-112). Berlin, Boston: Birkhäuser. https://doi.org/10.1515/9783034611398.105
- Glaser, B., & Strauss, A. (1967). *The Discovery of Grounded Theory*: Strategies for Qualitative Research. Sociology Press.
- Jacobs, J. (1999). *Experiential education*: The main dish, not just a side course. Boulder, Colorado: Association for Experiential Education.
- Kloeckner, A. P., Scherer, J. O., & Ribeiro, J. L. D. (2021). A game to teach and apply design thinking for innovation. *International Journal of Innovation*, 9(3), 557-587. https://doi.org/10.5585/iji.v9i3.20286
- Kolb, A. Y., & Kolb, D. A. (2005). Learning Styles and Learning Spaces: Enhancing Experiential Learning in Higher Education. *Academy of Management Learning & Education*, 4(2), 193–212. https://doi.org/10.5465/AMLE.2005.17268566
- Kolb, D. A. (1984). *Experiential learning*: Experience as the source of learning and development. Prentice-Hall.
- Krakauer, P. V. C., Serra, F. A. R., & Almeida, M. I. R. (2017). Using experiential learning to teach entrepreneurship: a study with Brazilian undergraduate students. *International Journal of Educational Management*, 31(7), 986-999. https://doi.org/10.1108/IJEM-09-2016-0189
- Linton, G., & Klinton, M. (2019). University entrepreneurship education: a design thinking approach to learning. *Journal of Innovation and Entrepreneurship*, 8(1). https://doi.org/10.1186/s13731-018-0098-z
- Lucena, J. P. O., Alves, T. D. C. L., & Ramos, A. S. M. (2022). O professor no ensino remoto durante a pandemia do novo Corona Vírus: desafios enfrentados e quebra de sentidos. *Revista Gestão Universitária na América Latina-GUAL*, 139-162. https://doi.org/10.5007/1983-4535.2022.e86684
- Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation. John Wiley & Sons.

CIK 13th INTERNATIONAL CONFERENCE

- Obi, B., Eze, T. & Chibuzo, N. (2021). Experiential learning activities in business education for developing 21st century competencies. *Journal of Education for Business*. 97. 1-12. https://doi.org/10.1080/08832323.2021.1884521
- Patil, M., & Meena, M. (2018). Effect of Practicing Experiential Learning (Like Online Learning-ICT) in Engineering Education. *Journal of Engineering Education Transformations*, 31(3), 95-101.
- Perusso, A., Blankesteijn, M., & Leal, R. (2019). The contribution of reflective learning to experiential learning in business education. *Assessment & Evaluation in Higher Education*, 45(7), 1–15. https://doi.org/10.1080/02602938.2019.1705963
- Pimentel, A. (2007). A teoria da aprendizagem experiencial como alicerce de estudos sobre desenvolvimento profissional. *Estudos de Psicologia*, 12(2):159-168. https://doi.org/10.1590/S1413-294X2007000200008
- Pinheiro, T., Alt, L., & Pontes, F. (2012). *Design Thinking Brasil:* empatia, colaboração, e experimentação para pessoas, negócios e sociedade. Elsevier.
- Pratomo, L. C., Siswandari, S., & Wardani, D. K. (2021). The Effectiveness of Design Thinking in Improving Student Creativity Skills and Entrepreneurial Alertness. *International Journal of Instruction*, 14(4), 695-712. https://doi.org/10.29333/iji.2021.14440a
- Reis, D. A., Fleury, A. L., Bento, T., Fabbri, K., Ortega, L. M., & Bagnato, V. (2019). Application of new agile approaches at University of São Paulo innovation agency's entrepreneurship and innovation course. *Gestão & Produção*, 26(4), 1-15. https://doi.org/10.1590/0104-530X4122-19
- Sathe, R., & Yu, W. (2021). Experiential Learning in the Classroom: An Accounting Cycle Simulation Project. *Journal of Higher Education Theory and Practice*, 21(7), 193-210. https://doi.org/10.33423/jhetp.v21i7.4496
- Serrat, O. (2017). *Knowledge Solutions*: Tools, Methods, and Approaches to Drive Organizational Performance. SpringerOpen.
- Silva, I. F. (2020). Describing the design thinking and extreme programming activities during a technology innovation academic workshop. *Innovation & Management Review*, 17(3), 267–284. https://doi.org/10.1108/inmr-03-2019-0039
- Sangwan, K. S., & Herrmann, C. (2020). Enhancing future skills and entrepreneurship: 3rd indo-german conference on sustainability in engineering (p. 292). Springer Nature. https://library.oapen.org/handle/20.500.12657/41277
- Stock, K. L., Bucar, B., & Vokoun, J. (2018). Walking in Another's Shoes: Enhancing Experiential Learning Through Design Thinking. *Management Teaching Review*, *3*(3), 221–228. https://doi.org/10.1177/2379298117736283
- Tarabasz, A., Selaković, M., & Abraham, C. H. (2018). The Classroom of the Future: Disrupting the Concept of Contemporary Business Education. *Entrepreneurial Business and Economics Review*, 6(4), 231-245. https://doi.org/10.15678/EBER.2018.060413
- Van Hanh, N. (2020). The real value of experiential learning project through contest in engineering design course: A descriptive study of students' perspective. *International Journal of Mechanical Engineering Education*, 48(3):221-240. https://doi.org/10.1177/0306419018812659
- Vianna, M., Vianna, Y., Adler, I. K., Lucena, B., & Russo, B. (2012). *Design thinking:* inovação em negócios [recurso eletrônico]. MJV Press.
- Yardley, S., Teunissen, P. W.; & Dornan, T. (2012). Experiential learning: Transforming theory into practice. *Medical Teacher*, 34(2), 161–164. https://doi.org/10.3109/0142159x.2012.643264
- Zidulka, A., & Kajzer Mitchell, I. (2018). Creativity or Cooptation? Thinking Beyond Instrumentalism When Teaching Design Thinking. *Journal of Management Education*, 42(6), 749–760. https://doi.org/10.1177/1052562918799797